Loading [MathJax]/extensions/TeX/AMSsymbols.js
SIRIUS 7.5.0
Electronic structure library and applications
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Pages
non_local_operator.cpp
Go to the documentation of this file.
1// Copyright (c) 2013-2019 Anton Kozhevnikov, Thomas Schulthess
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without modification, are permitted provided that
5// the following conditions are met:
6//
7// 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
8// following disclaimer.
9// 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
10// and the following disclaimer in the documentation and/or other materials provided with the distribution.
11//
12// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
13// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
14// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
15// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
16// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
17// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
18// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
19
20/** \file non_local_operator.cpp
21 *
22 * \brief Contains implementation of sirius::Non_local_operator class.
23 */
24
28
29namespace sirius {
30
31using namespace wf;
32using namespace sddk;
33
34template <typename T>
36 : ctx_(ctx__)
37{
38 PROFILE("sirius::Non_local_operator");
39
40 pu_ = this->ctx_.processing_unit();
41 auto& uc = this->ctx_.unit_cell();
42 packed_mtrx_offset_ = sddk::mdarray<int, 1>(uc.num_atoms());
43 packed_mtrx_size_ = 0;
44 size_ = 0;
45 for (int ia = 0; ia < uc.num_atoms(); ia++) {
46 int nbf = uc.atom(ia).mt_basis_size();
47 packed_mtrx_offset_(ia) = packed_mtrx_size_;
48 packed_mtrx_size_ += nbf * nbf;
49 size_ += nbf;
50 }
51
52 switch (pu_) {
53 case device_t::GPU: {
54 packed_mtrx_offset_.allocate(memory_t::device).copy_to(memory_t::device);
55 break;
56 }
57 case device_t::CPU: {
58 break;
59 }
60 }
61}
62
63template <typename T>
65 : Non_local_operator<T>(ctx_)
66{
67 if (ctx_.gamma_point()) {
68 this->op_ = mdarray<T, 3>(1, this->packed_mtrx_size_, ctx_.num_mag_dims() + 1);
69 } else {
70 this->op_ = mdarray<T, 3>(2, this->packed_mtrx_size_, ctx_.num_mag_dims() + 1);
71 }
72 this->op_.zero();
73 initialize();
74}
75
76template <typename T>
77void
79{
80 PROFILE("sirius::D_operator::initialize");
81
82 auto& uc = this->ctx_.unit_cell();
83
84 const int s_idx[2][2] = {{0, 3}, {2, 1}};
85
86 #pragma omp parallel for
87 for (int ia = 0; ia < uc.num_atoms(); ia++) {
88 auto& atom = uc.atom(ia);
89 int nbf = atom.mt_basis_size();
90 auto& dion = atom.type().d_mtrx_ion();
91
92 /* in case of spin orbit coupling */
93 if (uc.atom(ia).type().spin_orbit_coupling()) {
94 mdarray<std::complex<T>, 3> d_mtrx_so(nbf, nbf, 4);
95 d_mtrx_so.zero();
96
97 /* transform the d_mtrx */
98 for (int xi2 = 0; xi2 < nbf; xi2++) {
99 for (int xi1 = 0; xi1 < nbf; xi1++) {
100
101 /* first compute \f[A^_\alpha I^{I,\alpha}_{xi,xi}\f] cf Eq.19 in doi:10.1103/PhysRevB.71.115106 */
102
103 /* note that the `I` integrals are already calculated and stored in atom.d_mtrx */
104 for (int sigma = 0; sigma < 2; sigma++) {
105 for (int sigmap = 0; sigmap < 2; sigmap++) {
106 std::complex<T> result(0, 0);
107 for (auto xi2p = 0; xi2p < nbf; xi2p++) {
108 if (atom.type().compare_index_beta_functions(xi2, xi2p)) {
109 /* just sum over m2, all other indices are the same */
110 for (auto xi1p = 0; xi1p < nbf; xi1p++) {
111 if (atom.type().compare_index_beta_functions(xi1, xi1p)) {
112 /* just sum over m1, all other indices are the same */
113
114 /* loop over the 0, z,x,y coordinates */
115 for (int alpha = 0; alpha < 4; alpha++) {
116 for (int sigma1 = 0; sigma1 < 2; sigma1++) {
117 for (int sigma2 = 0; sigma2 < 2; sigma2++) {
118 result += atom.d_mtrx(xi1p, xi2p, alpha) *
119 pauli_matrix[alpha][sigma1][sigma2] *
120 atom.type().f_coefficients(xi1, xi1p, sigma, sigma1) *
121 atom.type().f_coefficients(xi2p, xi2, sigma2, sigmap);
122 }
123 }
124 }
125 }
126 }
127 }
128 }
129 d_mtrx_so(xi1, xi2, s_idx[sigma][sigmap]) = result;
130 }
131 }
132 }
133 }
134
135 /* add ionic contribution */
136
137 /* spin orbit coupling mixes terms */
138
139 /* keep the order of the indices because it is crucial here;
140 permuting the indices makes things wrong */
141 for (int xi2 = 0; xi2 < nbf; xi2++) {
142 int idxrf2 = atom.type().indexb(xi2).idxrf;
143 for (int xi1 = 0; xi1 < nbf; xi1++) {
144 int idxrf1 = atom.type().indexb(xi1).idxrf;
145 if (atom.type().indexb(xi1).am == atom.type().indexb(xi2).am) {
146 /* up-up down-down */
147 d_mtrx_so(xi1, xi2, 0) += dion(idxrf1, idxrf2) * atom.type().f_coefficients(xi1, xi2, 0, 0);
148 d_mtrx_so(xi1, xi2, 1) += dion(idxrf1, idxrf2) * atom.type().f_coefficients(xi1, xi2, 1, 1);
149
150 /* up-down down-up */
151 d_mtrx_so(xi1, xi2, 2) += dion(idxrf1, idxrf2) * atom.type().f_coefficients(xi1, xi2, 0, 1);
152 d_mtrx_so(xi1, xi2, 3) += dion(idxrf1, idxrf2) * atom.type().f_coefficients(xi1, xi2, 1, 0);
153 }
154 }
155 }
156
157 /* the pseudo potential contains information about
158 spin orbit coupling so we use a different formula
159 Eq.19 doi:10.1103/PhysRevB.71.115106 for calculating the D matrix
160
161 Note that the D matrices are stored and
162 calculated in the up-down basis already not the (Veff,Bx,By,Bz) one */
163 for (int xi2 = 0; xi2 < nbf; xi2++) {
164 for (int xi1 = 0; xi1 < nbf; xi1++) {
165 int idx = xi2 * nbf + xi1;
166 for (int s = 0; s < 4; s++) {
167 this->op_(0, this->packed_mtrx_offset_(ia) + idx, s) = d_mtrx_so(xi1, xi2, s).real();
168 this->op_(1, this->packed_mtrx_offset_(ia) + idx, s) = d_mtrx_so(xi1, xi2, s).imag();
169 }
170 }
171 }
172 } else {
173 /* No spin orbit coupling for this atom \f[D = D(V_{eff})
174 I + D(B_x) \sigma_x + D(B_y) sigma_y + D(B_z)
175 sigma_z\f] since the D matrices are calculated that way */
176 for (int xi2 = 0; xi2 < nbf; xi2++) {
177 int lm2 = atom.type().indexb(xi2).lm;
178 int idxrf2 = atom.type().indexb(xi2).idxrf;
179 for (int xi1 = 0; xi1 < nbf; xi1++) {
180 int lm1 = atom.type().indexb(xi1).lm;
181 int idxrf1 = atom.type().indexb(xi1).idxrf;
182
183 int idx = xi2 * nbf + xi1;
184 switch (this->ctx_.num_mag_dims()) {
185 case 3: {
186 T bx = uc.atom(ia).d_mtrx(xi1, xi2, 2);
187 T by = uc.atom(ia).d_mtrx(xi1, xi2, 3);
188
189 this->op_(0, this->packed_mtrx_offset_(ia) + idx, 2) = bx;
190 this->op_(1, this->packed_mtrx_offset_(ia) + idx, 2) = -by;
191
192 this->op_(0, this->packed_mtrx_offset_(ia) + idx, 3) = bx;
193 this->op_(1, this->packed_mtrx_offset_(ia) + idx, 3) = by;
194 }
195 case 1: {
196 T v = uc.atom(ia).d_mtrx(xi1, xi2, 0);
197 T bz = uc.atom(ia).d_mtrx(xi1, xi2, 1);
198
199 /* add ionic part */
200 if (lm1 == lm2) {
201 v += dion(idxrf1, idxrf2);
202 }
203
204 this->op_(0, this->packed_mtrx_offset_(ia) + idx, 0) = v + bz;
205 this->op_(0, this->packed_mtrx_offset_(ia) + idx, 1) = v - bz;
206 break;
207 }
208 case 0: {
209 this->op_(0, this->packed_mtrx_offset_(ia) + idx, 0) = uc.atom(ia).d_mtrx(xi1, xi2, 0);
210 /* add ionic part */
211 if (lm1 == lm2) {
212 this->op_(0, this->packed_mtrx_offset_(ia) + idx, 0) += dion(idxrf1, idxrf2);
213 }
214 break;
215 }
216 default: {
217 RTE_THROW("wrong number of magnetic dimensions");
218 }
219 }
220 }
221 }
222 }
223 }
224
225 if (env::print_checksum()) {
226 auto cs = this->op_.checksum();
227 print_checksum("D_operator", cs, this->ctx_.out());
228 }
229
230 if (this->pu_ == device_t::GPU && uc.max_mt_basis_size() != 0) {
231 this->op_.allocate(memory_t::device).copy_to(memory_t::device);
232 }
233
234 /* D-operator is not diagonal in spin in case of non-collinear magnetism
235 (spin-orbit coupling falls into this case) */
236 if (this->ctx_.num_mag_dims() == 3) {
237 this->is_diag_ = false;
238 }
239}
240
241template <typename T>
242Q_operator<T>::Q_operator(Simulation_context const& ctx__)
243 : Non_local_operator<T>(ctx__)
244{
245 /* Q-operator is independent of spin if there is no spin-orbit; however, it simplifies the apply()
246 * method if the Q-operator has a spin index */
247 if (this->ctx_.gamma_point()) {
248 this->op_ = mdarray<T, 3>(1, this->packed_mtrx_size_, this->ctx_.num_mag_dims() + 1);
249 } else {
250 this->op_ = mdarray<T, 3>(2, this->packed_mtrx_size_, this->ctx_.num_mag_dims() + 1);
251 }
252 this->op_.zero();
253 initialize();
254}
255
256template <typename T>
257void
259{
260 PROFILE("sirius::Q_operator::initialize");
261
262 auto& uc = this->ctx_.unit_cell();
263
264 #pragma omp parallel for
265 for (int ia = 0; ia < uc.num_atoms(); ia++) {
266 int iat = uc.atom(ia).type().id();
267 if (!uc.atom_type(iat).augment()) {
268 continue;
269 }
270 int nbf = uc.atom(ia).mt_basis_size();
271 for (int xi2 = 0; xi2 < nbf; xi2++) {
272 for (int xi1 = 0; xi1 < nbf; xi1++) {
273 /* The ultra soft pseudo potential has spin orbit coupling incorporated to it, so we
274 need to rotate the Q matrix */
275 if (uc.atom_type(iat).spin_orbit_coupling()) {
276 /* this is nothing else than Eq.18 of doi:10.1103/PhysRevB.71.115106 */
277 for (auto si = 0; si < 2; si++) {
278 for (auto sj = 0; sj < 2; sj++) {
279
280 std::complex<T> result(0, 0);
281
282 for (int xi2p = 0; xi2p < nbf; xi2p++) {
283 if (uc.atom(ia).type().compare_index_beta_functions(xi2, xi2p)) {
284 for (int xi1p = 0; xi1p < nbf; xi1p++) {
285 /* The F coefficients are already "block diagonal" so we do a full
286 summation. We actually rotate the q_matrices only */
287 if (uc.atom(ia).type().compare_index_beta_functions(xi1, xi1p)) {
288 result += this->ctx_.augmentation_op(iat).q_mtrx(xi1p, xi2p) *
289 (uc.atom(ia).type().f_coefficients(xi1, xi1p, sj, 0) *
290 uc.atom(ia).type().f_coefficients(xi2p, xi2, 0, si) +
291 uc.atom(ia).type().f_coefficients(xi1, xi1p, sj, 1) *
292 uc.atom(ia).type().f_coefficients(xi2p, xi2, 1, si));
293 }
294 }
295 }
296 }
297
298 /* the order of the index is important */
299 const int ind = (si == sj) ? si : sj + 2;
300 /* this gives
301 ind = 0 if si = up and sj = up
302 ind = 1 if si = sj = down
303 ind = 2 if si = down and sj = up
304 ind = 3 if si = up and sj = down */
305 this->op_(0, this->packed_mtrx_offset_(ia) + xi2 * nbf + xi1, ind) = result.real();
306 this->op_(1, this->packed_mtrx_offset_(ia) + xi2 * nbf + xi1, ind) = result.imag();
307 }
308 }
309 } else {
310 for (int ispn = 0; ispn < this->ctx_.num_spins(); ispn++) {
311 this->op_(0, this->packed_mtrx_offset_(ia) + xi2 * nbf + xi1, ispn) =
312 this->ctx_.augmentation_op(iat).q_mtrx(xi1, xi2);
313 }
314 }
315 }
316 }
317 }
318 if (env::print_checksum()) {
319 auto cs = this->op_.checksum();
320 print_checksum("Q_operator", cs, this->ctx_.out());
321 }
322
323 if (this->pu_ == device_t::GPU && uc.max_mt_basis_size() != 0) {
324 this->op_.allocate(memory_t::device).copy_to(memory_t::device);
325 }
326
327 this->is_null_ = true;
328 for (int iat = 0; iat < uc.num_atom_types(); iat++) {
329 if (uc.atom_type(iat).augment()) {
330 this->is_null_ = false;
331 }
332 /* Q-operator is not diagonal in spin only in the case of spin-orbit coupling */
333 if (uc.atom_type(iat).spin_orbit_coupling()) {
334 this->is_diag_ = false;
335 }
336 }
337}
338
339template <class T>
340int
341Non_local_operator<T>::size(int i) const
342{
343 if (i == 0 || i == 1) {
344 return this->size_;
345 }
346 RTE_THROW("invalid dimension");
347 return -1; // make compiler happy
348}
349
350template <class T>
351template <class F>
352sddk::matrix<F>
353Non_local_operator<T>::get_matrix(int ispn, memory_t mem) const
354{
355 static_assert(is_complex<F>::value, "not implemented for gamma point");
356
357 using double_complex = std::complex<double>;
358
359 auto& uc = ctx_.unit_cell();
360 std::vector<int> offsets(uc.num_atoms() + 1, 0);
361 for (int ia = 0; ia < uc.num_atoms(); ++ia) {
362 offsets[ia + 1] = offsets[ia] + uc.atom(ia).mt_basis_size();
363 }
364
365 sddk::matrix<double_complex> O(this->size(0), this->size(1), mem);
366 O.zero(mem);
367 int num_atoms = uc.num_atoms();
368 for (int ia = 0; ia < num_atoms; ++ia) {
369 int offset = offsets[ia];
370 int lsize = offsets[ia + 1] - offsets[ia];
371 if (mem == memory_t::device) {
372 double_complex* out_ptr = O.at(memory_t::device, offset, offset);
373 const double_complex* op_ptr =
374 reinterpret_cast<const double_complex*>(op_.at(memory_t::device, 0, packed_mtrx_offset_(ia), ispn));
375 // copy column by column
376 for (int col = 0; col < lsize; ++col) {
377 acc::copy(out_ptr + col * O.ld(), op_ptr + col * lsize, lsize);
378 }
379 } else if (mem == memory_t::host) {
380 double_complex* out_ptr = O.at(memory_t::host, offset, offset);
381 const double_complex* op_ptr =
382 reinterpret_cast<const double_complex*>(op_.at(memory_t::host, 0, packed_mtrx_offset_(ia), ispn));
383 // copy column by column
384 for (int col = 0; col < lsize; ++col) {
385 std::copy(op_ptr + col * lsize, op_ptr + col * lsize + lsize, out_ptr + col * O.ld());
386 }
387 } else {
388 RTE_THROW("invalid memory type.");
389 }
390 }
391 return O;
392}
393
394template sddk::matrix<std::complex<double>> Non_local_operator<double>::get_matrix(int, memory_t) const;
395
396template class Non_local_operator<double>;
397
398template class D_operator<double>;
399
400template class Q_operator<double>;
401
402#if defined(SIRIUS_USE_FP32)
403template class Non_local_operator<float>;
404
405template class D_operator<float>;
406
407template class Q_operator<float>;
408
409#endif
410
411} // namespace sirius
Contains declaration and implementation of sirius::Beta_projectors_base class.
Non-local part of the Hamiltonian and S-operator in the pseudopotential method.
Simulation context is a set of parameters and objects describing a single simulation.
bool gamma_point(bool gamma_point__)
Set flag for Gamma-point calculation.
int num_mag_dims() const
Number of dimensions in the magnetization vector.
mdarray< T, N > & allocate(memory_t memory__)
Allocate memory for array.
Definition: memory.hpp:1057
Base class for Hubbard occupancy and potential matrices.
void copy(T *target__, T const *source__, size_t n__)
Copy memory inside a device.
Definition: acc.hpp:320
Namespace of the SIRIUS library.
Definition: sirius.f90:5
void initialize(bool call_mpi_init__=true)
Initialize the library.
Definition: sirius.hpp:82
const std::complex< double > pauli_matrix[4][2][2]
Pauli matrices in {I, Z, X, Y} order.
Definition: constants.hpp:59
Contains declaration of sirius::Non_local_operator class.